Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 187
2.
Front Immunol ; 15: 1283364, 2024.
Article En | MEDLINE | ID: mdl-38357542

Introduction: Pancreatic cancer is a truculent disease with limited treatment options and a grim prognosis. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness in pancreatic cancer has been lacking. As a result, it is crucial to identify markers associated with immunological pathways in order to improve the treatment outcomes for this deadly cancer. The purpose of this study was to investigate the diagnostic and prognostic significance of three markers, CD8, CD68, and VISTA, in pancreatic ductal adenocarcinoma (PDAC), the most common subtype of pancreatic cancer. Methods: We analyzed gene expression data from Gene Expression Omnibus (GEO) database using bioinformatics tools. We also utilized the STRING online tool and Funrich software to study the protein-protein interactions and transcription factors associated with CD8, CD68, and VISTA. In addition, tissue microarray (TMA) and immunohistochemistry (IHC) staining were performed on 228 samples of PDAC tissue and 10 samples of normal pancreatic tissue to assess the expression levels of the markers. We then correlated these expression levels with the clinicopathological characteristics of the patients and evaluated their survival rates. Results: The analysis of the GEO data revealed slightly elevated levels of VISTA in PDAC samples compared to normal tissues. However, there was a significant increase in CD68 expression and a notable reduction in CD8A expression in pancreatic cancer. Further investigation identified potential protein-protein interactions and transcription factors associated with these markers. The IHC staining of PDAC tissue samples showed an increased expression of VISTA, CD68, and CD8A in pancreatic cancer tissues. Moreover, we found correlations between the expression levels of these markers and certain clinicopathological features of the patients. Additionally, the survival analysis revealed that high expression of CD8 was associated with better disease-specific survival and progression-free survival in PDAC patients. Conclusion: These findings highlight the potential of CD8, CD68, and VISTA as diagnostic and prognostic indicators in PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , CD8-Positive T-Lymphocytes , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Transcription Factors , CD8 Antigens/metabolism
3.
Neuroscience ; 540: 103-116, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38266907

The infection hypothesis is a new causative explanation for Alzheimer's disease (AD). In recent decades, various species of bacterial pathogens have been distinguished in the autopsy of Alzheimer's patients; however, the mechanism of bacterial contribution to AD pathology is still unknown. To explore the hypothesis, Cutibacterium acnes (C. acnes) was selected, and effects of its intracerebroventricular (ICV) inoculation in rats was evaluated. The results revealed that C. acnes causes memory impairment, which might be a consequence of upregulated Amyloid ß (Aß) deposits in the hippocampus; Aß aggregates are co-localized with C. acnes colonies. The key point of our hypothesis is that the activation of the innate immune system by C. acnes through the TLR2/NF-κB/NLRP3 signaling pathway, eventually leads to increased neuroinflammation, which might be resulted from microgliosis and astrogliosis. Neuroinflammation increases oxidative stress and cell apoptosis. Overall, the obtained results of this study support our hypothesis that brain exposure to C. acnes prompted neuroinflammation with similar AD-like pathology.


Alzheimer Disease , Humans , Rats , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Hippocampus/metabolism , Signal Transduction , Disease Models, Animal
4.
Mov Disord ; 39(2): 411-423, 2024 Feb.
Article En | MEDLINE | ID: mdl-37947042

BACKGROUND: The unique neurovascular structure of the retina has provided an opportunity to observe brain pathology in many neurological disorders. However, such studies on neurodegeneration with brain iron accumulation (NBIA) disorders are lacking. OBJECTIVES: To investigate NBIA's neurological and ophthalmological manifestations. METHODS: This cross-sectional study was conducted on genetically confirmed NBIA patients and an age-gender-matched control group. The thickness of retinal layers, central choroidal thickness (CCT), and capillary plexus densities were measured by spectral domain-optical coherence tomography (SD-OCT) and OCT angiography, respectively. The patients also underwent funduscopy, electroretinography (ERG), visual evoked potential (VEP), and neurological examination (Pantothenate-Kinase Associated Neurodegeneration-Disease Rating Scale [PKAN-DRS]). The generalized estimating equation model was used to consider inter-eye correlations. RESULTS: Seventy-four patients' and 80 controls' eyes were analyzed. Patients had significantly decreased visual acuity, reduced inner or outer sectors of almost all evaluated layers, increased CCT, and decreased vessel densities, with abnormal VEP and ERG in 32.4% and 45.9%, respectively. There were correlations between visual acuity and temporal peripapillary nerve fiber layer (positive) and between PKAN-DRS score and disease duration (negative), and scotopic b-wave amplitudes (positive). When considering only the PKAN eyes, ONL was among the significantly decreased retinal layers, with no differences in retinal vessel densities. Evidence of pachychoroid was only seen in patients with Kufor Rakeb syndrome. CONCLUSION: Observing pathologic structural and functional neurovascular changes in NBIA patients may provide an opportunity to elucidate the underlying mechanisms and differential retinal biomarkers in NBIA subtypes in further investigations. © 2023 International Parkinson and Movement Disorder Society.


Neurodegenerative Diseases , Pantothenate Kinase-Associated Neurodegeneration , Humans , Cross-Sectional Studies , Evoked Potentials, Visual , Retina/diagnostic imaging , Retina/pathology , Brain , Neurodegenerative Diseases/pathology , Tomography, Optical Coherence , Iron
6.
Ann Clin Transl Neurol ; 10(12): 2238-2254, 2023 12.
Article En | MEDLINE | ID: mdl-37776067

OBJECTIVE: To evaluate the alterations of language and memory functions using dynamic causal modeling, in order to identify the epileptogenic hemisphere in temporal lobe epilepsy (TLE). METHODS: Twenty-two patients with left TLE and 13 patients with right TLE underwent functional magnetic resonance imaging (fMRI) during four memory and four language mapping tasks. Dynamic causal modeling (DCM) was employed on fMRI data to examine effective directional connectivity in memory and language networks and the alterations in people with TLE compared to healthy individuals. RESULTS: DCM analysis suggested that TLE can influence the memory network more widely compared to the language network. For memory mapping, it demonstrated overall hyperconnectivity from the left hemisphere to the other cranial regions in the picture encoding, and from the right hemisphere to the other cranial regions in the word encoding tasks. On the contrary, overall hypoconnectivity was seen from the brain hemisphere contralateral to the seizure onset in the retrieval tasks. DCM analysis further manifested hypoconnectivity between the brain's hemispheres in the language network in patients with TLE compared to controls. The CANTAB® neuropsychological test revealed a negative correlation for the left TLE and a positive correlation for the right TLE cohorts for the connections extracted by DCM that were significantly different between the left and right TLE cohorts. INTERPRETATION: In this study, dynamic causal modeling evidenced the reorganization of language and memory networks in TLE that can be used for a better understanding of the effects of TLE on the brain's cognitive functions.


Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Language , Temporal Lobe , Cognition , Neuropsychological Tests
7.
Top Stroke Rehabil ; 30(8): 796-806, 2023 12.
Article En | MEDLINE | ID: mdl-37723098

BACKGROUND: Post-stroke fatigue is a disturbing condition with various physical and psychological facets, which needs to be assessed by meaningful and psychometrically valid and reliable tools. The Chalder Fatigue Questionnaire (CFQ) and Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) have been designed to assess diverse dimensions of fatigue. OBJECTIVES: The present study aimed to investigate the psychometric properties of the CFQ and MFSI-SF in people with chronic stroke. METHODS: Both measures were translated according to forward-backward standard protocol. This cross-sectional study was conducted with 130 first-time stroke survivors. The multidimensional fatigue inventory, checklist individual strength, fatigue assessment scale, fatigue subscale of profiles of mood state, fatigue severity scale, visual analogue scale-fatigue, beck anxiety inventory, center for epidemiologic studies of depression scale, and 36-item short-form health survey were administered in addition to the CFQ and MFSI-SF. Reliability, precision, known-groups validity, and convergent validity were examined for the CFQ and MFSI-SF. RESULTS: The results showed an acceptable (Cronbach's alpha = 0.81-0.97) internal consistency and test-retest reliability (intra-class correlation = 0.75-0.97). The CFQ and MFSI-SF revealed good ability (P < 0.001) to differentiate chronic stroke survivors with different disability levels. Significant high correlation (P = -0.61-0.87) was found between CFQ and MFSI-SF and other fatigue scales. CONCLUSIONS: The results of this study showed that the CFQ and MFSI-SF have high reliability and validity for chronic stroke survivors.


Stroke , Humans , Psychometrics , Cross-Sectional Studies , Iran , Reproducibility of Results , Stroke/complications , Health Surveys , Brain Damage, Chronic , Fatigue/diagnosis , Fatigue/etiology , Survivors
8.
Physiol Behav ; 271: 114353, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37714320

Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.

9.
Int J Dev Neurosci ; 83(8): 677-690, 2023 Dec.
Article En | MEDLINE | ID: mdl-37563091

GBM, or glioblastoma multiforme, is a brain tumor that poses a great threat to both children and adults, being the primary cause of death related to brain tumors. GBM is often associated with epilepsy, which can be debilitating. Seizures and the development of epilepsy are the primary symptoms that have a severe impact on the quality of life for GBM patients. It is increasingly apparent that the nervous system plays an essential role in the tumor microenvironment for all cancer types, including GBM. In recent years, there has been a growing understanding of how neurotransmitters control the progression of gliomas. Evidence suggests that neurotransmitters and neuromodulators found in the tumor microenvironment play crucial roles in the excitability, proliferation, quiescence, and differentiation of neurons, glial cells, and neural stem cells. The involvement of neurotransmitters appears to play a significant role in various stages of GBM. In this review, the focus is on presenting updated knowledge and emerging ideas regarding the interplay between neurotransmitters and neuromodulators, such as glutamate, GABA, norepinephrine, dopamine, serotonin, adenosine, and their relationship with GBM and the seizures induced by this condition. The review aims to explore the current understanding and provide new insights into the complex interactions between these neurotransmitters and neuromodulators in the context of GBM-related seizures.


Brain Neoplasms , Epilepsy , Glioblastoma , Adult , Child , Humans , Glioblastoma/complications , Glioblastoma/pathology , Quality of Life , Seizures/etiology , Epilepsy/complications , Brain Neoplasms/complications , Brain Neoplasms/pathology , Neurotransmitter Agents , Tumor Microenvironment
10.
Cell Death Dis ; 14(8): 490, 2023 08 01.
Article En | MEDLINE | ID: mdl-37528089

There is accumulating evidence that the circulatory levels of autotaxin (ATX) and lysophosphatidic acid (LPA) are increased in patients with severe liver disease. However, the potential role of the ATX-LPA axis in hepatic encephalopathy (HE) remains unclear. Our study aimed to investigate the role of the ATX-LPA signaling pathway in mice with thioacetamide (TAA) induced acute HE. To show the role of the ATX-LPA axis in the context of HE, we first measured the involvement of ATX-LPA in the pathogenesis of TAA-induced acute HE. Then, we compared the potential effects of ATX inhibitor (HA130) on astrocyte responses at in vitro and gut-liver-brain axis at in vivo levels. The inflammatory chemokine (C-C motif) ligand 3 was significantly increased in the hyperammonemic condition and could be prevented by ATX inhibition in astrocytes at in vitro level. Further statistical tests revealed that plasma and tissue pro-inflammatory cytokines were inhibited by HA130 in mice. Furthermore, the stage of HE was significantly improved by HA130. The most surprising result was that HA130 alleviated immune infiltrating cells in the liver and intestine and decreased mucus-secreting cells in the intestine. Further analysis showed that the levels of liver enzymes in serum were significantly decreased in response to ATX inhibition. Surprisingly, our data indicated that HA130 could recover permeabilization of the blood-brain barrier, neuroinflammation, and recognition memory. Besides that, we found that the changes of Interleukin-1 (IL-1) and aquaporin-4 (AQP4) in HE might have a connection with the glymphatic system based on bioinformatics analyses. Taken together, our data showed that the ATX-LPA axis contributes to the pathogenesis of HE and that inhibition of ATX improves HE.


Hepatic Encephalopathy , Liver Diseases , Mice , Animals , Brain
11.
PLoS One ; 18(7): e0288003, 2023.
Article En | MEDLINE | ID: mdl-37506087

The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results. Cell metabolic activity is deviated in a direction other than the Krebs cycle by acidic media The mitochondrial metabolic activity of all groups was enhanced over time, except for acidic media. Unlike the highest amount of ROS in conditioned media, its level decreased to the level of acidic media in the combination group. Furthermore, cells were deviated towards autophagy, rather than apoptosis, by the addition of acidic media to the conditioned media, unlike the conditioned media. Global DNA methylation analysis revealed significantly higher DNA hypomethylation in acidic media than in normal and combination media. Not only were cells treated with conditioned media rescued by acidic media, but also DNA hypomethylation and apoptosis in the combination group were decreased through epigenetic modifications. The acidic and conditioned media produced by cancer cells can remotely activate malignant signaling pathways, much like zombies, which can cause metabolic and epigenetic changes in normal cells.


Neoplasms , Signal Transduction , Humans , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Fibroblasts/metabolism , Neoplasms/pathology , DNA/metabolism , Tumor Microenvironment , Cell Line, Tumor
12.
Med J Islam Repub Iran ; 37: 40, 2023.
Article En | MEDLINE | ID: mdl-37284692

Background: Neurostimulation is one of the new therapeutic approaches in patients with drug-resistant epilepsy, and despite its high efficiency, its mechanism of action is still unclear. On the one hand, electrical stimulation in the human brain is immoral; on the other hand, the creation of the epilepsy model in laboratory animals affects the entire brain network. As a result, one of the ways to achieve the neurostimulation mechanism is to use epileptiform activity models In vitro. In vitro models, by accessing the local network from the whole brain, we can understand the mechanisms of action of neurostimulation. Methods: A literature search using scientific databases including PubMed, Google Scholar, and Scopus, using "Neurostimulation" and "epileptiform activity" combined with "high-frequency stimulation", " low-frequency stimulation ", and "brain slices" as keywords were conducted, related concepts to the topic gathered and are used in this paper. Results: Electrical stimulation causes neuronal depolarization and the release of GABAA, which inhibits neuronal firing. Also, electrical stimulation inhibits the nervous tissue downstream of the stimulation site by preventing the passage of nervous activity from the upstream to the downstream of the axon. Conclusion: Neurostimulation techniques consisting of LFS and HFS have a potential role in treating epileptiform activity, with some studies having positive results. Further investigations with larger sample sizes and standardized outcome measures can be conducted to validate the results of previous studies.

13.
Int J Biol Macromol ; 242(Pt 3): 125127, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37263327

Diabetic wounds are chronic wounds that are currently affecting many patient's quality of life. These wounds are challenging because of the impaired healing cycle and harsh environment. In this study in situ gelling hydrogels based on oxidized carboxymethyl cellulose (OCMC) and gelatin (Gel) were used to hasten the healing rate due to their ease of application. The suggested system in this work is synthesized from entirely natural renewable biomaterials to not only achieve the best biocompatibility and biodegradability but also to develop a sustainable product. The rheological studies showed that the hydrogel is turned into a gel after about 30 s of the mixing process. Moreover, the hydrogel can absorb about ten times its weight, keeping the wound hydrated. In vitro biological investigations indicated optimal biocompatibility, antibacterial, and antioxidant activity for faster tissue regeneration. This product was tested in vivo on normal rats and diabetic mice models to treat full-thickness incisional wounds. Results showed that the OCMC-Gel hydrogel is able to hasten the healing rate in both non-diabetic and diabetic wounds. Pathological examinations of the regenerated skin tissue revealed that the OCMC-Gel treated groups developed much more than the control group.


Diabetes Mellitus, Experimental , Hydrogels , Rats , Mice , Animals , Hydrogels/pharmacology , Gelatin , Carboxymethylcellulose Sodium/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Quality of Life , Wound Healing
14.
Dyslexia ; 29(3): 264-285, 2023 Aug.
Article En | MEDLINE | ID: mdl-37337459

Sufficient activation of the left fusiform gyrus is important in reading ability acquisition due to its role in reading and naming, working memory (WM), and balance tasks. Recently, a newly-designed training program, Verbal Working Memory-Balance (VWM-B), has been evaluated on children with dyslexia, and its positive effects were shown on reading ability, WM capacity, and postural control. In the present study, we aimed to estimate the functional connectivity alterations of the left fusiform gyrus following training by the VWM-B. Before and after 15 sessions of training, the fMRI and other tools data were collected on a sample of children with dyslexia, who were allocated into two control and experiment groups. Data analyses showed the increased functional connectivity of the left fusiform gyrus between the left anterior temporal fusiform cortex, left and right Crus II regions of the cerebellum, and the left middle frontal gyrus. Moreover, VWM-B training significantly improved the reading and naming ability, WM capacity, and postural control of participants in the experiment group in comparison to the control. The current study findings emphasize the critical role of the left fusiform gyrus in reading ability. Moreover, it provides evidence to support the existence of cerebellar deficits in dyslexia.


Dyslexia , Humans , Child , Dyslexia/diagnostic imaging , Memory, Short-Term , Reading , Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging
15.
Clin Linguist Phon ; : 1-31, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37303193

The primary goal of this study was to evaluate the treatment effects of semantic feature analysis (SFA) and phonological components analysis (PCA) on word retrieval processing in persons with aphasia (PWAs). After identifying the locus of the breakdown in lexical retrieval processing, 15 monolingual native Persian speakers with aphasia were divided into two groups. After three naming trials, participants with dominant semantic deficits received SFA, and participants with primary phonological deficits were provided with PCA three times a week for eight weeks. Both approaches improved participants' naming and performance on language tests, including spontaneous speech, repetition, comprehension, and semantic processing. However, the correct naming of treated and untreated items was higher in mild-to-moderate participants, with mostly circumlocution and semantic paraphasias in the SFA group. The same holds for mild-to-moderate participants with mostly phonemic paraphasia who received PCA therapy. Moreover, the results showed that participants' baseline naming performance and semantic abilities could be associated with the treatment outcomes. Although limited by a lack of a control group, this study provided evidence supporting the possible benefits of focusing on the locus of the breakdown for treating anomia through SFA and PCA approaches, specifically in participants with mild to moderate aphasia. However, for those with severe aphasia, the treatment choice may not be as straightforward because several variables are likely to contribute to this population's word-finding difficulties. Replication with larger, well-stratified samples, use of a within-subjects alternating treatment design and consideration of treatments' long-term effects are required to better ascertain the effects of focusing on the locus of breakdown for treatment of anomia.

16.
Basic Clin Neurosci ; 14(1): 1-18, 2023.
Article En | MEDLINE | ID: mdl-37346878

A patient with epilepsy was shown to have neurobiological, psychological, cognitive, and social issues as a result of recurring seizures, which is regarded as a chronic brain disease. However, despite numerous drug treatments, approximately, 30%-40% of all patients are resistant to antiepileptic drugs. Therefore, newer therapeutic modalities are introduced into clinical practice which involve neurostimulation and direct stimulation of the brain. Hence, we review published literature on vagus nerve stimulation, trigeminal nerve stimulation, applying responsive stimulation systems, and deep brain stimulation (DBS) in animals and epileptic patient with an emphasis on drug-resistant epilepsy.

17.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3075-3086, 2023 11.
Article En | MEDLINE | ID: mdl-37145127

Spinal cord edema is a quick-onset phenomenon with long-term effects. This complication is associated with inflammatory responses, as well as poor motor function. No effective treatment has been developed against spinal edema, which urges the need to provide novel therapies. Astaxanthin (AST) is a fat-soluble carotenoid with anti-inflammatory effects and a promising candidate for treating neurological disorders. This study aimed to investigate the underlying mechanism of AST on the inhibition of spinal cord edema, astrocyte activation, and reduction of inflammatory responsesin a rat compression spinal cord injury (SCI) model. Male rats underwent laminectomy at thoracic 8-9, and the SCI model was induced using an aneurysm clip. After SCI, rats received dimethyl sulfoxide or AST via intrathecal injection. The effects of AST were examined on the motor function, spinal cord edema, integrity of blood-spinal cord barrier (BSCB), and expression of high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), glial fibrillary acidic protein (GFAP), and aquaporin-4 (AQP4), and matrix metallopeptidase- 9 (MMP-9) post-SCI. We showed that AST potentially improved the recovery of motor function and inhibited the spinal cord edema via maintaining the integrity of BSCB, reducing the expression of HMGB1, TLR4, and NF-κB, MMP-9 as well as downregulation of astrocyte activation (GFAP) and AQP4 expression. AST improves motor function and reduces edema and inflammatory responses in the spinal tissue. These effects are mediated by suppression of the HMGB1/TLR4/NF-κB signaling pathway, suppressing post-SCI astrocyte activation, and decreasing AQP4 and MMP-9 expression.


Antioxidants , Astrocytes , HMGB1 Protein , Spinal Cord Injuries , Animals , Male , Rats , Astrocytes/drug effects , Astrocytes/metabolism , Edema/drug therapy , Edema/metabolism , HMGB1 Protein/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Toll-Like Receptor 4/metabolism , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disease Models, Animal , Injections, Spinal
18.
Biomed Pharmacother ; 160: 114378, 2023 Apr.
Article En | MEDLINE | ID: mdl-36774721

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with high mortality and morbidity rate affecting both upper and lower motor neurons (MN). Muscle force reduction, behavioral change, pseudobulbar affect, and cognitive impairments are the most common clinical manifestations of ALS. The main physiopathology of ALS is still unclear, though several studies have identified that oxidative stress, proteinopathies, glutamate-related excitotoxicity, microglial activation, and neuroinflammation may be involved in the pathogenesis of ALS. From 1995 until October 2022, only Riluzole, Dextromethorphan Hydrobromide (DH) with Quinidine sulfate (Q), Edaravone, and Sodium phenylbutyrate with Taurursodiol (PB/TUDCO) have achieved FDA approval for ALS treatment. Despite the use of these four approved agents, the survival rate and quality of life of ALS patients are still low. Thus, finding novel treatments for ALS patients is an urgent requirement. Masitinib, a tyrosine kinase inhibitor, emphasizes the neuro-inflammatory activity of ALS by targeting macrophages, mast cells, and microglia cells. Masitinib downregulates the proinflammatory cytokines, indirectly reduces inflammation, and induces neuroprotection. Also, it was effective in phase 2/3 and 3 clinical trials (CTs) by increasing overall survival and delaying motor, bulbar, and respiratory function deterioration. This review describes the pathophysiology of ALS, focusing on Masitinib's mechanism of action and explaining why Masitinib could be a promising actor in the treatment of ALS patients. In addition, Masitinib CTs and other competitor drugs in phase 3 CTs have been discussed.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Quality of Life , Seasons
19.
Appl Neuropsychol Adult ; 30(6): 780-801, 2023.
Article En | MEDLINE | ID: mdl-35666667

The pattern of brain neuroplasticity after naming therapies in patients with aphasia can be evaluated using task-based fMRI. This article aims to review studies investigating brain reorganization after semantic and phonological-based anomia therapy that used picture-naming fMRI tasks. We searched for those articles that compared the activation of brain areas before and after aphasia therapies in the PubMed and the EMBASE databases from 1993 up to April 2020. All studies (single-cases or group designs) on anomia treatment in individuals with acquired aphasia were reviewed. Data were synthesized descriptively through tables to allow the facilitated comparison of the studies. A total of 14 studies were selected and reviewed. The results of the reviewed studies demonstrated that the naming improvement is associated with changes in the activation of cortical and subcortical brain areas. This review highlights the need for a more systematic investigation of the association between decreased and increased activation of brain areas related to anomia therapy. Also, more detailed information about factors influencing brain reorganization is required to elucidate the neural mechanisms of anomia therapy. Overall, regarding the theoretical and clinical aspects, the number of studies that used intensive protocol is growing, and based on the positive potential of these treatments, they could be suitable for the rehabilitation of people with aphasia.

20.
Protein Pept Lett ; 30(1): 65-71, 2023.
Article En | MEDLINE | ID: mdl-36284385

BACKGROUND: Interneural gap junctional coupling represents neural development that decreases during the postnatal period. The decrease of gap junction function coincides with the main period of chemical synapse creation and increment of synaptic activity during postnatal weeks 1 to 3. METHODS: Here, we have assessed the role of chemical synapses on connexin (Cx) expression in neurons and glial cells of hippocampal and cortical neurons. We characterized the impact of NMDA receptors blockade on the expression of Cx36 and Cx43 proteins by western blot analysis in postnatal day (PND)14 and PND28. MK801 was injected subcutaneously from the first day of birth until 14 or 28 days, depending on the experimental groups. Saline was injected in the same volumes in the control group. RESULTS: Early postnatal blockade of the NMDA subtype of glutamate receptors by the non-competitive antagonist dizocilpine maleate (MK801) arrested the developmental reduction in gap junctions during the initial postnatal weeks. Expression of Cx43 declined in PND28 compared to PND14 in visual cortex (VC) neurons. Also, we found that the expression of Cx36 and Cx43 augmented in the rats' VC in PND28 following the blockade of NMDA receptors. Expression of Cx36 declined in PND28 compared to PND14 in hippocampal neurons. Also, we found that the expression of Cx36 augmented in the rats' hippocampal neurons in PND14 and PND28 following a blockade of NMDA receptors. CONCLUSION: These results suggest that the postnatal enhancement in glutamatergic synaptic activity is associated with the loss of gap junctional connections and downregulation of Cx36 and Cx43 between developing neurons and glial cells.


Connexin 43 , Connexins , Rats , Animals , Connexins/analysis , Connexins/genetics , Connexins/metabolism , Connexin 43/genetics , Connexin 43/analysis , Connexin 43/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/analysis , Dizocilpine Maleate/metabolism , Up-Regulation , Neurons/chemistry , Neurons/metabolism , Hippocampus/metabolism
...